Connect with us

Cool Stuff

Smart Dubai Office Employs MENA’s First ‘Robot Receptionist’

Published

on

The Smart Dubai Office (SDO), has partnered with regional technology business solutions (TBS) provider Nearbuy to host a trial of the first ‘robot receptionist’ in the Middle East. Farah, which stands 1.50 metres tall, started work today at the Smart Dubai Office headquarters in the Dubai Design District.

It features a touch-screen panel where visitors to the office can check in, automatically alerting the employee they are meeting of their arrival. The robot will then escort the guest to the meeting room, allowing them to settle in while waiting for their host to join them.

Farah, which means happiness in Arabic, was named following an internal competition conducted at Smart Dubai. It will be subject to a probation period of three months, like a human employee. Its sophisticated programming means that it is capable of performing a range of other duties relevant to the traditional receptionist role, including taking guests’ orders for tea, coffee and other beverages, which it can then transmit to the office pantry for fulfillment, as well as security screening and taking payment orders where needed.

Her Excellency Dr Aisha Bint Butti Bin Bishr, Director General of the Smart Dubai Office, welcomed her new team member, saying, “Smart Dubai is delighted to host this ground-breaking experiment in artificial intelligence – the first of its kind in the region – at our offices. Our objective is not to replace humans with robots, rather to understand where we can automate some repetitive administrative functions to allow us to invest in and create new types of sustainable employment opportunities for talented people.”

HE Dr Aisha added: “Farah the robot has not replaced any of our team members seeing as we already had a touchscreen reception facility. It is our hope that this three-month experiment will give us some great insights into the potential uses of applied artificial intelligence in our quest to make Dubai a world-leading smart city. We are also looking forward to sharing the insights with other partner government entities as we additionally seek to maximise the use of new technologies in the public sector.”

Nicolas Standeart, CEO and founder of Nearbuy, which owns Farah, said: “As well as adding some fun to the workplace, robots are already providing invaluable, reliable and cost-effective business support to a number of companies globally. As a UAE home-grown company that is pioneering tech-based business solutions internationally, we are delighted to be partnering with Smart Dubai to experiment with workplace-based artificial intelligence in this exciting city we intentionally chose as a home base for our global business. We have no doubt that the insights gained will go on to benefit many organisations in the region and further afield.”

Developed in Germany, Werobots are the most advanced wayfinding robots developed to date. Nearbuy owns the exclusive licence for Werobots in the Middle East and has seamlessly integrated the technology with its other platforms. The home-grown company has developed world-leading digital tech-based solutions for public venues. Among the services the company offers to its business customers is tailored programming and leasing of robots, which can be utilised in a number of different functions, including information providing and wayfinding for visitors at airports, business districts, retail environments, events and corporate environments.

Cool Stuff

Pop Culture Show Popcon Middle East Comes to Dubai in November 2022

Published

on

Dubai will be hosting its first edition of PopCon Middle East (PopConME) from the 10th  – 13th  November 2022. Promising the ultimate weekend, PopConME will showcase the best in Movies, TV, comics, graphic novels, anime, cosplay, and much more. In partnership with Dubai Festivals and Retail Establishment (DFRE), Speedy Comics, and Alanza Trading, PopConME will take place at the Dubai Exhibition Centre (DEC), Expo City Dubai, featuring exclusive workshops, movie screenings, Cosplay gaming competitions, and much more.

PopConME will be running as part of Dubai Esports Festival (DEF 2022) taking place from the 9th – 20th November 2022, the most exciting esports and gaming event in the Middle East, and a trend-setter for the region’s gaming industry which is set to cement Dubai’s position as a year-round global hub for esports and gaming.

“We are excited to introduce PopConME to Dubai. I have been a fan of comic books since I was a child and have been entrenched in the community from an early age. This is a dream come true for a true geek like me. I want this convention to have everything and more my geek heart desires.” said Amer Rashed Al Farooq, Deputy CEO, Speedy Comics Group, the region’s number one destination for vintage comics and pop culture collectibles.

This festival will give fans the opportunity to celebrate their favourite celebrities, meet like-minded people, and indulge in the world of fantasy all under one roof. Comic book geeks will get the opportunity to meet and greet their favourite talents up close, attend exclusive workshops and buy one-of-a-kind merchandise at the Artist Alley. Packed with interactive zones and activations PopConME will host its own People’s Choice Cosplay, Dungeons & Dragons, Pokémon/Yu-Gi-Oh Card Competitions.

Featuring a line-up of some of the biggest international talents, PopConME has already confirmed the attendance of Nightmare on Elm Street actress Katie Cassidy, who is also known for her portrayal of the demon Ruby in the fantasy horror series, Supernatural and Black Canary in Arrow. Also confirmed to attend are CW Supernatural Kevin Tran and Dirk Gently’s Holistic Detective Agency actor, Osric Chau, and voice actor Ray Porter best known for his portrayal of DC Comics Villain, Darkseid in Zack Snyder’s Justice League.

Continue Reading

3D Printing

Abu Dhabi-Based Khalifa University Develops 3D-Printed Glasses to Help Correct Colour Blindness

Published

on

Khalifa University of Science and Technology, a consistently top-ranked research-intensive university based in Abu Dhabi, has developed a new method to manufacture customized glasses using 3D printing that could help people with colour blindness. Colour Vision Deficiency (CVD) is an inherited ocular disorder that manifests itself by limiting the retina cones’ ability to transmit the whole spectrum of colours.

With red-green colour blindness being the most prevalent form of CVD, the most common way of dealing with everyday difficulties is by wearing tinted glasses. Now, a team of researchers from Khalifa University has developed lenses using transparent resin mixed with two wavelength-filtering dyes to provide a tinting effect. To customise the lenses and make them as similar as possible to commercially available products, the team used two dyes – one blocked the undesired wavelengths for red-green patients, while the other filtered unwanted wavelengths for yellow-blue patients, with volunteers for both groups attesting to the lenses’ efficacy.

Even though glasses based on this method are commercially available at present, they are not comfortable for wearing, nor optimizable. However, the Khalifa University research team has developed its own frames for the lenses, using 3D printing to optimize the frames for comfort and usability, making them as close as possible to regular glasses.

Dr. Haider Butt, Associate Professor, Mechanical Engineering, Khalifa University, said, “Our results showed that 3D printing had no influence on the wavelength-filtering properties of the dyes. In fact, the dyes remained unchanged as they were integrated with the resin and 3D printed. When we compared the optical performance of our glasses with commercial glasses for colour blindness, our results indicated that our 3D-printed glasses were more selective in filtering undesired wavelengths than the commercially available options. They have great potential in treating colour blindness, and their ease of fabrication and customization means they can be tailored to suit each individual patient.”

The glasses underwent several tests to address toxicity, durability, and longevity concerns. These tests included storing the glasses in water for over a week to analyze whether any dye would leak and leaving them out in the open under ambient conditions for another week. The glasses exhibited tensile strength and flexibility, proving their stability and long-lasting properties.

Khalifa University’s research outcome presents an opportunity for people with color blindness to mitigate their inability to distinguish between shades of certain colours that could restrict them from working in fields where color recognition is critical, in addition to carrying out everyday tasks. The research was funded by organizations from Abu Dhabi, including real estate developer Aldar Properties, and Sandooq Al Watan, a social initiative.

Continue Reading

Cool Stuff

Emirates Mars Mission Tracks Martian Dust Storms

Published

on

The Emirates Mars Mission, the first interplanetary exploration undertaken by an Arab nation, is returning a number of unique observations of Martian dust storms, providing an unparalleled depth of information and insight into the way in which these storms evolve and spread across huge swathes of the planet.

Hope provides a powerful platform to observe details of the structure and variability of the Martian atmosphere.  Coordinated observations made by the EXI camera and the EMIRS infrared spectrometer characterize the thermal state of the surface and lower atmosphere and provide details of the geographic distribution of dust, water vapor, and water and carbon-dioxide ice clouds over time scales of minutes to days.

The EXI camera system collects images at three visible and two ultraviolet wavelengths – providing a multispectral “weather satellite view” of Mars.  The color composites presented here are assembled from images taken through EXI’s blue, green, and red filters (centered at 437, 546, and 635 nanometers).   These images are “calibrated” products that have removed many of the artifacts introduced by the camera system and also provide the observation geometry information to allow for mapping.  The contrast has been adjusted to enhance the visibility of the surface and atmospheric features.

EMIRS is an interferometric thermal infrared spectrometer (operating in the 6-40 micron wavelength range) that complements EXI in characterizing the lower atmosphere of Mars. EMIRS measurements are used to determine the distribution of lower atmospheric constituents such as dust, water ice, and water vapor (presented here as optical depth – related to the number of aerosols suspended in the atmosphere).

In addition, Mars surface temperatures and atmospheric temperature profiles up to 50 km from the surface are measured.  For the figures shown here, EMIRS data are averaged over an individual orbit of the Hope spacecraft (a time span of about 55 hours) to construct “globes” of dust optical depth (shown as shades of red, overlaid on a 3D map of surface elevations; these “globes” are centered at 4°N latitude, 100°E longitude).  The warming of the suspended dust by sunlight leads to increased atmospheric temperatures, which are also detected by EMIRS.

Rapid evolution
Starting in late December 2021, EXI and EMIRS monitored a rapidly-evolving regional dust storm as it expanded to a size of over several thousand km.  A series of EXI and EMIRS “globes” are presented here (orientated with north to the top), documenting the growth and dissipation of the storm over nearly two weeks.

The prominent dark “shark’s fin” feature in the EXI images is known as Syrtis Major. In this area, thin deposits of dark basaltic sand cover the surface of a gently-sloping shield volcano.  To the south, the tan circular feature is the Hellas impact basin (the largest crater on Mars – about 2300 km across, and up to 7 km deep) – often shrouded in dust and water-ice clouds.  In both the EMIRS and EXI globes, a green star marks a “reference location” (an 85-km diameter impact crater) to visually aid tracking features in both data sets.

On 29 December 2021 (EMM orbit number 153), EXI captured a fully illuminated disk of Mars nearly centered on Syrtis Major (image center: 24.6°S, 81.1°E). It was mid-winter in the southern hemisphere (Ls = 149°).  As is typical for this season, the atmosphere was relatively clear, with only thin water-ice clouds visible over the plains to the east of Syrtis.  As is also typical, Hellas appeared to be filled with tannish dust clouds, obscuring deposits of surface ice mantling the southern portion of the basin.  The EMIRS observations during this time confirm the relatively thick dust clouds in Hellas but detect only low amounts of suspended dust elsewhere. This set of EXI and EMIRS observations provides a baseline to compare with the subsequent views of Mars obtained over the following two weeks.

On 5 January 2022 (EMM orbit number 156), EXI obtained this half-illuminated view of Mars (image center: 12.3°S, 94.8°E) — the sun was just setting near the center of the disk.  Apparently forming over the previous week, a massive dust storm (about 2500 km across) was approaching from the east and was partially obscuring Syrtis Major; greyish water-ice clouds are also evident in this storm.  Hellas was completely shrouded by dust clouds.  The EMIRS observations clearly show the high concentrations of dust in the Syrtis and Hellas dust storms, with a “dust haze” extending far to the east.

On January 7, 2022 (EMM orbit number 157), this mid-day EXI observation better reveals the extent of the dust haze and greyish water-ice clouds spreading to the east of Syrtis Major and to the north of Hellas (image center: 22.8°S, 97.9°E).  The EMIRS data reveal the increasing thickness of this diffuse dust haze, suggesting the active lifting of dust from the surface extending at least 4000 km eastward from Syrtis Major.

On January 9, 2022 (EMM orbit number 158), EXI observed a fully illuminated hemisphere centered on Syrtis Major (image center: 22.7°S, 62.6°E).  The dust-lifting has extended to the west, with a discrete multi-lobed dust storm (about 1200 km across) swirling over northwestern Syrtis.  The dust haze is very prominent covering the plains eastward from Syrtis.  Again, EMIRS reveals the extent of the dust clouds – dramatically portraying the increased dust optical depth from NW of Syrtis all the way to the eastern limb of the map – spanning about 1/3 of the circumference of Mars!  Compare this set of observations with the relatively clear conditions prevailing on 29 December 2021!

The final time step is for January 14, 2022 (EMM orbit number 160).  EXI shows a late-afternoon (nearing sunset) view of Syrtis Major (image center: 8.5°S, 117.0°E).  No discrete dust storms are visible; instead, a pervasive dust haze partially obscures and extends eastward from the entire Syrtis Major/Hellas region.  EMIRS data also indicate the thinning of the haze, with the amount of dust significantly reduced.  The continuation of the dust veil to fill the Hellas basin is evident in both the EXI image and EMIRS map.

As the Martian season approaches southern spring, dust storm activity typically becomes more pervasive.  The Hope observatory is a valuable orbiting asset in documenting the location and evolution of dust storms on the planet, giving unprecedented observations and insight into the nature of these storms and their characterisation.

Continue Reading
Advertisement
Advertisement
Advertisement
Advertisement

Latest Reviews

Follow us on Facebook