Connect with us

Cool Stuff

Starkey Launches New AI-Enabled Hearing Aids

Published

on

Giscard Bechara, the Director of Starkey, speaks to Gadget Voize about the “world’s first” hearing aid that uses AI and integrated sensors

Please tell us about the ‘Artificial Intelligence’ feature of your hearing aids?
Livio AI is the “world’s first” hearing aid that utilizes Artificial Intelligence and integrated sensors. We have introduced this product earlier this year that can give millions of families in UAE and caregivers peace of mind. This correlation between hearing loss, aging and falling is one reason why Starkey designed the world’s first hearing aid with a fall detection feature. The odds of having hearing loss and falling increase as we age, so having a single device that can help with multiple aging issues, as opposed to a different device for each condition is significantly more convenient and beneficial for users. 

Giscard Bechara, the Director of Starkey

What is so unique about this particular hearing aid and how can it help UAE senior citizens?
If you’re an older adult or care for someone then ‘falling’ is likely to be high on your list of worries. And rightfully so, according to the National Council on Aging, every 11 seconds, an older adult is treated in an emergency room for a fall-related injury. 

Fall Alert, a feature of Livio AI, can detect falls and send alert messages to selected contacts. Starkey Hearing Technologies incorporated significant new inventions to avoid false-positives and flag only true falls. Using their built-in 3D sensors, Livio AI hearing aids can detect when a wearer falls, and send alert messages to selected friends or family members. In the UAE, it is estimated that hearing loss affects close to 4% of the population apart from the growing number of undiagnosed cases where people are unaware of their hearing loss challenges.

Furthermore, unlike other fall-detection devices, which hang around the neck or are worn on the wrist, Livio AI benefits from the anatomy and physiology of the human body. During typical, daily activities and instances of falls, muscles in the neck work with the balance system of the inner ear to protect and stabilize the head. Since hearing aids are worn on the head, they are naturally less prone to mistake daily activities for falls than the devices worn on other parts of the body, additionally, the built-in sensors monitor the wearer and are always active

How does this technology actually work? What is the sequence of actions that triggers these alerts?
Here’s how the device works:

  • The hearing aid wearer selects up to three contacts on their smartphone to be notified if they fall.
  • Auto alert feature automatically sends an alert to the contact(s) if the hearing aid wearer falls.
  • The alert contains the GPS location of the wearer.
  • The contact can then immediately call the wearer back to check on them or otherwise get them help.
  • The manual alert feature allows the wearer to simply tap their hearing aid to send an alert for a fall or non-fall related event.

Does Livio AI have any other features especially catering to the Arab audience?
This is the world’s first Healthable that tracks physical activity and cognitive health as measured by hearing aid use in social situations. Livio AI also translates 27 languages including Arabic. We are delighted to add value to the lives of people in the UAE and the Middle East with this state-of-the-art product.

The new Hearing Reality technology provides an average 50 percent reduction in noisy environments, significantly reduces listening effort, while the use of artificial intelligence and integrated sensors enable it to optimize the hearing experience. With advanced environmental detection, geotagged settings, a natural user interface, and now a rechargeable battery option, Livio AI is the ultimate in sound quality, in usability and a multi-functional, must-have device.

Do you have any statistics or studies that you can share with regard to this particular challenge faced by senior citizens?
As per studies, nearly 40 percent of people who live at home after reaching the age of 65 will fall at least once a year. Accidental falls pose a significant health risk to older adults. They often lead to a loss of independence and can abruptly alter the course of one’s life. And people with mild hearing loss are three times more likely to have a history of falling than peers with normal hearing.

World Health Organisation (WHO) estimates the financial cost of hearing a loss to be $750 billion every year. On the other hand, untreated hearing loss affects daily life and can lead to social isolation, stress, anxiety, depression, and cognitive decline.

Hearing loss and falling are common side effects of aging. Falls are a leading cause of fatal and non-fatal injuries for elderly citizens worldwide. Starkey has always envisioned a monumental positive impact on society. Livio AI and its fall detection alert feature will not only provide peace of mind to caregivers but could potentially save lives all over the world. 

Are you showcasing the Livio AI’s anywhere in the UAE for the general audience to see?
Starkey will be participating at the ‘AccessAbilities Expo’ that takes place in UAE in November this year, which is the region’s dedicated event, that aims to bring the world’s latest assistive technology products with the goal of enhancing lives of more than 50 million people in the region having disabilities. We will be showcasing Livio AI at the Expo. Livio AI is so much more than just a hearing aid, it is a gateway to better health, wellness and ultimately, a better quality of life, we are also developing some very interesting features to be added to this technology soon.

Click to comment

Leave a Reply

Your email address will not be published.

Cool Stuff

Pop Culture Show Popcon Middle East Comes to Dubai in November 2022

Published

on

Dubai will be hosting its first edition of PopCon Middle East (PopConME) from the 10th  – 13th  November 2022. Promising the ultimate weekend, PopConME will showcase the best in Movies, TV, comics, graphic novels, anime, cosplay, and much more. In partnership with Dubai Festivals and Retail Establishment (DFRE), Speedy Comics, and Alanza Trading, PopConME will take place at the Dubai Exhibition Centre (DEC), Expo City Dubai, featuring exclusive workshops, movie screenings, Cosplay gaming competitions, and much more.

PopConME will be running as part of Dubai Esports Festival (DEF 2022) taking place from the 9th – 20th November 2022, the most exciting esports and gaming event in the Middle East, and a trend-setter for the region’s gaming industry which is set to cement Dubai’s position as a year-round global hub for esports and gaming.

“We are excited to introduce PopConME to Dubai. I have been a fan of comic books since I was a child and have been entrenched in the community from an early age. This is a dream come true for a true geek like me. I want this convention to have everything and more my geek heart desires.” said Amer Rashed Al Farooq, Deputy CEO, Speedy Comics Group, the region’s number one destination for vintage comics and pop culture collectibles.

This festival will give fans the opportunity to celebrate their favourite celebrities, meet like-minded people, and indulge in the world of fantasy all under one roof. Comic book geeks will get the opportunity to meet and greet their favourite talents up close, attend exclusive workshops and buy one-of-a-kind merchandise at the Artist Alley. Packed with interactive zones and activations PopConME will host its own People’s Choice Cosplay, Dungeons & Dragons, Pokémon/Yu-Gi-Oh Card Competitions.

Featuring a line-up of some of the biggest international talents, PopConME has already confirmed the attendance of Nightmare on Elm Street actress Katie Cassidy, who is also known for her portrayal of the demon Ruby in the fantasy horror series, Supernatural and Black Canary in Arrow. Also confirmed to attend are CW Supernatural Kevin Tran and Dirk Gently’s Holistic Detective Agency actor, Osric Chau, and voice actor Ray Porter best known for his portrayal of DC Comics Villain, Darkseid in Zack Snyder’s Justice League.

Continue Reading

3D Printing

Abu Dhabi-Based Khalifa University Develops 3D-Printed Glasses to Help Correct Colour Blindness

Published

on

Khalifa University of Science and Technology, a consistently top-ranked research-intensive university based in Abu Dhabi, has developed a new method to manufacture customized glasses using 3D printing that could help people with colour blindness. Colour Vision Deficiency (CVD) is an inherited ocular disorder that manifests itself by limiting the retina cones’ ability to transmit the whole spectrum of colours.

With red-green colour blindness being the most prevalent form of CVD, the most common way of dealing with everyday difficulties is by wearing tinted glasses. Now, a team of researchers from Khalifa University has developed lenses using transparent resin mixed with two wavelength-filtering dyes to provide a tinting effect. To customise the lenses and make them as similar as possible to commercially available products, the team used two dyes – one blocked the undesired wavelengths for red-green patients, while the other filtered unwanted wavelengths for yellow-blue patients, with volunteers for both groups attesting to the lenses’ efficacy.

Even though glasses based on this method are commercially available at present, they are not comfortable for wearing, nor optimizable. However, the Khalifa University research team has developed its own frames for the lenses, using 3D printing to optimize the frames for comfort and usability, making them as close as possible to regular glasses.

Dr. Haider Butt, Associate Professor, Mechanical Engineering, Khalifa University, said, “Our results showed that 3D printing had no influence on the wavelength-filtering properties of the dyes. In fact, the dyes remained unchanged as they were integrated with the resin and 3D printed. When we compared the optical performance of our glasses with commercial glasses for colour blindness, our results indicated that our 3D-printed glasses were more selective in filtering undesired wavelengths than the commercially available options. They have great potential in treating colour blindness, and their ease of fabrication and customization means they can be tailored to suit each individual patient.”

The glasses underwent several tests to address toxicity, durability, and longevity concerns. These tests included storing the glasses in water for over a week to analyze whether any dye would leak and leaving them out in the open under ambient conditions for another week. The glasses exhibited tensile strength and flexibility, proving their stability and long-lasting properties.

Khalifa University’s research outcome presents an opportunity for people with color blindness to mitigate their inability to distinguish between shades of certain colours that could restrict them from working in fields where color recognition is critical, in addition to carrying out everyday tasks. The research was funded by organizations from Abu Dhabi, including real estate developer Aldar Properties, and Sandooq Al Watan, a social initiative.

Continue Reading

Cool Stuff

Emirates Mars Mission Tracks Martian Dust Storms

Published

on

The Emirates Mars Mission, the first interplanetary exploration undertaken by an Arab nation, is returning a number of unique observations of Martian dust storms, providing an unparalleled depth of information and insight into the way in which these storms evolve and spread across huge swathes of the planet.

Hope provides a powerful platform to observe details of the structure and variability of the Martian atmosphere.  Coordinated observations made by the EXI camera and the EMIRS infrared spectrometer characterize the thermal state of the surface and lower atmosphere and provide details of the geographic distribution of dust, water vapor, and water and carbon-dioxide ice clouds over time scales of minutes to days.

The EXI camera system collects images at three visible and two ultraviolet wavelengths – providing a multispectral “weather satellite view” of Mars.  The color composites presented here are assembled from images taken through EXI’s blue, green, and red filters (centered at 437, 546, and 635 nanometers).   These images are “calibrated” products that have removed many of the artifacts introduced by the camera system and also provide the observation geometry information to allow for mapping.  The contrast has been adjusted to enhance the visibility of the surface and atmospheric features.

EMIRS is an interferometric thermal infrared spectrometer (operating in the 6-40 micron wavelength range) that complements EXI in characterizing the lower atmosphere of Mars. EMIRS measurements are used to determine the distribution of lower atmospheric constituents such as dust, water ice, and water vapor (presented here as optical depth – related to the number of aerosols suspended in the atmosphere).

In addition, Mars surface temperatures and atmospheric temperature profiles up to 50 km from the surface are measured.  For the figures shown here, EMIRS data are averaged over an individual orbit of the Hope spacecraft (a time span of about 55 hours) to construct “globes” of dust optical depth (shown as shades of red, overlaid on a 3D map of surface elevations; these “globes” are centered at 4°N latitude, 100°E longitude).  The warming of the suspended dust by sunlight leads to increased atmospheric temperatures, which are also detected by EMIRS.

Rapid evolution
Starting in late December 2021, EXI and EMIRS monitored a rapidly-evolving regional dust storm as it expanded to a size of over several thousand km.  A series of EXI and EMIRS “globes” are presented here (orientated with north to the top), documenting the growth and dissipation of the storm over nearly two weeks.

The prominent dark “shark’s fin” feature in the EXI images is known as Syrtis Major. In this area, thin deposits of dark basaltic sand cover the surface of a gently-sloping shield volcano.  To the south, the tan circular feature is the Hellas impact basin (the largest crater on Mars – about 2300 km across, and up to 7 km deep) – often shrouded in dust and water-ice clouds.  In both the EMIRS and EXI globes, a green star marks a “reference location” (an 85-km diameter impact crater) to visually aid tracking features in both data sets.

On 29 December 2021 (EMM orbit number 153), EXI captured a fully illuminated disk of Mars nearly centered on Syrtis Major (image center: 24.6°S, 81.1°E). It was mid-winter in the southern hemisphere (Ls = 149°).  As is typical for this season, the atmosphere was relatively clear, with only thin water-ice clouds visible over the plains to the east of Syrtis.  As is also typical, Hellas appeared to be filled with tannish dust clouds, obscuring deposits of surface ice mantling the southern portion of the basin.  The EMIRS observations during this time confirm the relatively thick dust clouds in Hellas but detect only low amounts of suspended dust elsewhere. This set of EXI and EMIRS observations provides a baseline to compare with the subsequent views of Mars obtained over the following two weeks.

On 5 January 2022 (EMM orbit number 156), EXI obtained this half-illuminated view of Mars (image center: 12.3°S, 94.8°E) — the sun was just setting near the center of the disk.  Apparently forming over the previous week, a massive dust storm (about 2500 km across) was approaching from the east and was partially obscuring Syrtis Major; greyish water-ice clouds are also evident in this storm.  Hellas was completely shrouded by dust clouds.  The EMIRS observations clearly show the high concentrations of dust in the Syrtis and Hellas dust storms, with a “dust haze” extending far to the east.

On January 7, 2022 (EMM orbit number 157), this mid-day EXI observation better reveals the extent of the dust haze and greyish water-ice clouds spreading to the east of Syrtis Major and to the north of Hellas (image center: 22.8°S, 97.9°E).  The EMIRS data reveal the increasing thickness of this diffuse dust haze, suggesting the active lifting of dust from the surface extending at least 4000 km eastward from Syrtis Major.

On January 9, 2022 (EMM orbit number 158), EXI observed a fully illuminated hemisphere centered on Syrtis Major (image center: 22.7°S, 62.6°E).  The dust-lifting has extended to the west, with a discrete multi-lobed dust storm (about 1200 km across) swirling over northwestern Syrtis.  The dust haze is very prominent covering the plains eastward from Syrtis.  Again, EMIRS reveals the extent of the dust clouds – dramatically portraying the increased dust optical depth from NW of Syrtis all the way to the eastern limb of the map – spanning about 1/3 of the circumference of Mars!  Compare this set of observations with the relatively clear conditions prevailing on 29 December 2021!

The final time step is for January 14, 2022 (EMM orbit number 160).  EXI shows a late-afternoon (nearing sunset) view of Syrtis Major (image center: 8.5°S, 117.0°E).  No discrete dust storms are visible; instead, a pervasive dust haze partially obscures and extends eastward from the entire Syrtis Major/Hellas region.  EMIRS data also indicate the thinning of the haze, with the amount of dust significantly reduced.  The continuation of the dust veil to fill the Hellas basin is evident in both the EXI image and EMIRS map.

As the Martian season approaches southern spring, dust storm activity typically becomes more pervasive.  The Hope observatory is a valuable orbiting asset in documenting the location and evolution of dust storms on the planet, giving unprecedented observations and insight into the nature of these storms and their characterisation.

Continue Reading
Advertisement
Advertisement
Advertisement
Advertisement

Latest Reviews

Follow us on Facebook